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Interaction with the environment may induce stochastic semiclassical dynamics
in open quantum systems. In the gravitational context, stress-energy fluctuations
of quantum matter fields give rise to a stochastic behavior in the spacetime
geometry. The Einstein–Langevin equation is a suitable tool to take these effects
into account when addressing the backreaction problem in semiclassical gravity.
We analyze within this framework the generation of gravitational fluctuations
during inflation, which are of great interest for large-scale structure formation
in cosmology.

1. INTRODUCTION

One of the key problems in modern cosmology is that of cosmic structure
formation [1, 2]. If an inflationary period is present, the initial seeds for
structure formation are supposed to be originated by the quantum fluctuations
of the inflaton field, which is responsible for driving inflation [3]. By semiclas-
sical backreaction on the spacetime geometry, these quantum fluctuations
will, in turn, produce fluctuations on the spacetime metric. Here we want to
look at this problem within the context of a simple chaotic inflationary model
by means of a recently suggested formalism. In this formalism classical
metric fluctuations induced by quantum matter fluctuations are described by
a Langevin-type equation [4]. This is an alternative to the more usual approach
in which some perturbative degrees of freedom of the gravitational field are
also quantized [5].

The idea behind this approach is to relate the backreaction problem in
semiclassical gravity with the dynamics of open quantum systems. In fact,
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there are a number of situations in which one is interested in the observables
and the dynamics of a few degrees of freedom from a whole closed quantum
system undergoing unitary evolution. These degrees of freedom constitute
an open system whose dynamics is no longer unitary due to its interaction
with the remaining degrees of freedom of the whole system, which constitute
the environment [6, 7].

For the existence of a semiclassical regime for the system dynamics
two requirements are needed [8, 9]. The first is decoherence, which guarantees
that probabilities can be consistently assigned to histories describing the
evolution of the system. The second is that these probabilities should be
peaked near histories which correspond to solutions of classical equations of
motion. The effect of the environment plays a crucial role in the semiclassical
dynamics of the system. In fact, on one hand, it may provide enough induced
decoherence through the entanglement between system and environment [10,
11, 7]. On the other hand, the environment backreaction on the system
dynamics will produce both dissipation and noise (commonly connected
by fluctuation-dissipation relations). The environment may thus induce a
semiclassical stochastic dynamics on the system, which may be suitably
described by a Langevin-type equation [9].

The plan of the paper is the following: In Section 2 we give a brief
summary of the Einstein–Langevin equation. We apply this formalism in
Section 3 to study the generation of cosmological gravitational perturbations
during inflation by considering the simplest model leading to chaotic inflation.
We finally discuss our main conclusions in Section 4. Throughout the paper
we use natural units (" 5 c 5 1) and the (1, 1, 1) sign convention of ref. 12.

2. EINSTEIN–LANGEVIN EQUATION

In the context of semiclassical gravity one treats the matter fields as
quantum fields on a classical curved spacetime. As a consequence of their
energy density, these fields act as gravitational sources which modify the
spacetime geometry. To study this backreaction effect one usually uses the
so-called semiclassical Einstein equation

Gab[g] 5
8p
m2

p
^Tab[g, f̂[g]]&ren (1)

where the renormalized expectation value of the stress tensor operators of the
quantum matter fields in some quantum state are introduced as gravitational
sources. There are, however, some situations in which the fluctuations of the
stress tensor operator are important [13]. In those cases we cannot expect
that the semiclassical Einstein equation provides the actual dynamics of the
spacetime metric any longer, but some kind of averaged description.
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It may be useful to consider the spacetime metric as an open system which
interacts gravitationally with the quantum matter fields, which constitute the
environment [14, 15]. In this case the system will exhibit a stochastic dynamics
with fluctuations due to the noise induced by the environment. In order to
take this effect into account, the following modified equation, known as the
Einstein–Langevin equation, has been suggested [4]:

Gab[g 1 h] 2
8p
m2

p
^T̂ab[g 1 h]&ren 5

8p
m2

p
jab[g] (2)

where g is a solution of the semiclassical Einstein equation which is used as
the background metric, and h is a linear perturbation. The field zab[g] is a
Gaussian stochastic classical source with the following properties:

^jab(x)&j 5 0 (3)

^jab(x)jcd ( y)&j 5 1–2 ^{t̂ab(x), t̂cd ( y)}&[g] (4)

where t̂ab(x) [ T̂ab(x) 2 ^T̂ab(x)&. We use the two different notations, ^?&j and
^?&, to explicitly distinguish the average associated to a classical stochastic
process from the expectation value of quantum operators. The correlation
function for the stochastic source, which will generate a stochastic dynamics
on the spacetime geometry, was precisely chosen to take into account the
quantum fluctuations of the stress tensor.

3. COSMOLOGICAL PERTURBATIONS GENERATED
DURING INFLATION

Let us now consider the simplest model leading to chaotic inflation [3],
which is driven by a massive real scalar field f̂ minimally coupled to the
spacetime curvature (this field is usually called the inflaton). The correspond-
ing Lagrangian density is thus

+(f̂) 5 1–2 gab¹af̂¹bf̂ 1 1–2 m2f̂2 (5)

A few comments are in order. First, the condition for the existence of an
inflationary period (characterized by an accelerated expansion of spacetime)
is that the value of the field averaged over a region with a typical size equal
to the Hubble radius (the so-called horizon scale) is higher than the Planck
mass mp. In fact, in order to have enough inflation to solve the horizon and
the flatness problem, more than 60 e-folds are needed. To achieve that, the
scalar field should begin with a value higher than 3mp. On the other hand,
as will be shown below, the small value of the cosmic microwave background
(CMB) large-scale anisotropies measured by COBE [16] imposes a severe
constraint on the inflaton mass m, which should be of the order of 1026mp.
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We want to study small metric perturbations around a Robertson–Walker
geometry. For this purpose we need to deal with the corresponding gauge
freedom either by choosing a particular gauge or by working with gauge-
invariant quantities [5]. We will restrict our study to scalar-type perturbations
of the metric. The expression for the perturbed metric in the longitudinal
gauge is then

ds2 5 a2(h){2[1 1 2F(x)]dh2 1 [1 2 2C(x)]dij dxi dx j} (6)

where the two functions F(x) and C(x) correspond in this case to Bardeen’s
gauge-invariant variables and a2(h) is the cosmological scale factor of the
background Robertson–Walker geometry. As shown below, the Einstein–
Langevin equation (2) is gauge invariant. Therefore, we can work in a given
gauge and finally extract the desired gauge-invariant quantities in a consistent
way. To see how the first term of Eq. (2) is gauge invariant, one uses the
following result for linear perturbations in h:

• Aa
b[g 1 h] is gauge invariant if and only if + ›§ (Aa

b[g]) 5 0 for any
vector field ›§ (x) and this is equivalent to Aa

b[g] } da
b (zero being a

particular case).

The left hand side of our Einstein–Langevin equation is thus gauge
invariant if G(0)

ab [g] 2 (8p/m2
p)^T̂ [0)

ab [g]&ren 5 0, but this is indeed the case since
the background metric g is taken to be a solution of the semiclassical Einstein
equation. On the other hand, the right hand side of Eq. (2) is explicitly gauge
invariant since it does not depend on the perturbed metric.

It is convenient to decompose the inflaton scalar field in the following
way: f̂(x) 5 f(t) 1 ŵ(x), where f(t) is the homogeneous background solution,
which is compatible with the background metric through the semiclassical
Einstein equation, and f̂(x) corresponds to a free massive quantum scalar
field with zero expectation value on the spacetime with the background metric:
^f̂(x)&g 5 0. The two main ingredients that we need for our Einstein–Langevin
equation are the renormalized expectation value of the stress tensor on the
spacetime with the perturbed metric g̃ 5 g 1 h and the noise kernel, which
takes into account the fluctuations of the stress tensor evaluated on the
background metric. The stress tensor of a minimally coupled massive scalar
field is

T̂mn 5 ­mf̂­nf̂ 2 1–2 g̃mn(­mf̂­mf̂ 1 m2f̂2) (7)

Using the decomposition for the scalar field introduced above, we rewrite
the renormalized expectation value for the stress tensor as

^T̂mn[g 1 h]&ren 5 ^T̂mn[g 1 h]&ff 1 ^T̂mn[g 1 h]&fw 1 ^T̂mn[g 1 h]&ren
ww (8)

where only the homogeneous solution for the scalar field contributes to the
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first term. The second term is proportional to ^ŵ[g 1 h]&, but this quantity
is no longer zero since the field dynamics is considered on the perturbed
spacetime. Finally, the last term corresponds to the expectation value of the
stress tensor for a free scalar field on a spacetime with the perturbed metric.
In the usual approach when computing fluctuations during inflation, ŵ is
treated perturbatively. This last term, being quadratic in ŵ, is of higher order
and will not be taken into account.

As for the noise kernel, after using the previous decomposition, the
following expression is obtained:

^{t̂mn, t̂rs}&[g] 5 ^{t̂mn, t̂rs}&fw[g] 1 ^{t̂mn, t̂rs}&ww[g] (9)

where we have used the fact that ^ŵ&g 5 0 5 ^ŵŵŵ&g for Gaussian states
(those considered here) on the background geometry. It is important to note
that both contributions to the noise kernel (the first term is quadratic in ŵ
and the second one is quartic) are “conserved” separately since both f(t)
and ŵ(x) satisfy the Klein–Gordon equation on the background geometry.
Due to this fact, the two corresponding stochastic sources can be consistently
considered in an independent way. We are thus allowed to concentrate on
the source associated to the first term from now on. The contribution of a
term of the same sort as the second one has been discussed elsewhere [17].
One can check that the space–space components coming from the stress-
tensor expectation value terms that we are considering and the stochastic
source are diagonal, i.e., ^T̂ij& 5 0 5 jij for i Þ j. This, in turn, implies that
the two gauge-invariant quantities used to characterize the scalar-type metric
perturbations must be equal: F 5 C [5].

Let us write the Einstein–Langevin equation in Fourier space and con-
sider the 0i component:

2iki(*Fk 1 F8k) 5
8p
m2

p
jk0i (10)

where ki is the comoving momentum component associated to the comoving
coordinate x i (throughout the paper we use the index k to denote the comoving
momentum vector

›
k that labels the Fourier modes in flat space), primes

denote derivatives with respect to the conformal time h, and * [ a8(h)/
a(h). The left hand side is just the linearized Einstein tensor for the perturbed
metric (6) [5]. There should also appear a nonlocal term of dissipative charac-
ter coming from the second term in (8), which we have not considered in
this work, where we are mainly concerned about the fluctuating part.

From this equation we may obtain the metric perturbations Fk in terms
of the stochastic source jk 0i. For this purpose we need the retarded propagator
for the gravitational potential Fk , i.e., the required Green function to solve
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the inhomogeneous first-order differential equation (10) with the appropriate
boundary conditions:

G̃ret
k (h, h8) 5 2i

4p
ki m2

p
1u(h 2 h8)

a(h8)
a(h)

1 f (h, h8)2 (11)

where f (h, h8) is a homogeneous solution related to the chosen initial condi-
tions. If we take, for instance, f (h, h8) 5 2u(h0 2 h8)a(h8)/a(h), we would
obtain the stochastic evolution of the metric perturbations for h . h0 due
to the effect of the stochastic source after h0. The correlation function for
the metric perturbations is then given by the following expression:

^Fk(h)Fk8(h8)&j 5 (2p)3d(
›

k 1
›

k 8) #
h

dh1 #
h8

dh2 G̃ret
k (h, h1)G̃ret

k8 (h8, h2)

3 ^jk0i(h1)jk80i(h2)&j (12)

The correlation function for the stochastic source is, in turn, connected with
the stress-energy fluctuations:

^jk0i(h1)j2k0i(h2)&j 5 1–2 ^{t̂ k
0i(h1), t̂ 2k

0i (h2)}&fw

5 1–2 ki kif8(h1)f8(h2)G(1)
k (h1, h2) (13)

where G(1)
k (h1, h2) 5 ^{ŵk(h1), ŵ2k(h2)}& is the k-mode Hadamard function

for a free minimally coupled scalar field which is in a state close to the
Euclidean vacuum on an almost de Sitter background.

The so-called “slow-roll” parameters account for the fact that the back-
ground geometry is not exactly that of de Sitter spacetime [for which a(h)
5 21/Hh with 2` , h , 0]. It is also useful to compute the Hadamard
function for a massless field and consider a perturbative expansion in terms
of the dimensionless parameter m/mp , for which observations seem to imply,
as will be seen below, a value of the order of 1026. Thus, we will consider
G(1)

k (h1, h2) 5 a(h1)a(h2)G(1)
k (h1, h2) 5 ^0.{ŷk(h1), ŷ2k(h2)}.0& such that âk.0& 5

0 with ŷk(h) 5 a(h)ŵk(h) 5 âkuk(h) 1 â†
2ku*2k(h) and uk(h) 5 (2k)21/2e2ikh(1 2

i/kh) corresponding to the positive-frequency k-mode for a massless minimally
coupled scalar field in the Euclidean vacuum state on a de Sitter background [18].

The result to lowest order in the mass m of the inflaton field and the “slow-
roll” parameters is

^Fk(h)Fk8(h8)&j 5
64p5

m4
p

(a(h)a(h8))21 d(
›
k 1

›
k8)

3 #
h

h0

dh1 #
h8

h0

dh2 a(h1)a(h2) ḟ(h1)ḟ(h2)G(1)
k (h1h2)
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5 64p5 1m
mp
2

2

k23 d(
›
k 1

›
k8) #

kh

kh0

d(kh1) #
kh8

kh0

d(kh2)
kh
kh1

kh8

kh2

3 Fcos k(h1 2 h2) ? 11 1
1

kh1 kh2
2 2 sin k(h1 2 h2)

? 1 1
kh1

2
1

kh2
2G

5 64p5 1m
mp
2

2

k23 d(
›
k 1

›
k8) Fcos k(h 2 h8)

2
1

kh0
(kh cos k(h 2 h0)

1 kh8 cos k(h8 2 h0)) 1
khkh8

(kh0)2G (14)

where we used the lowest order approximation for ḟ(t) during “slow roll” (overdots
denote derivatives with respect to the physical time t): ḟ(t) . 2m2

p(m/mp). We
considered the effect of the stochastic source after the conformal time h0. Notice
that the result (14) is rather independent of the value of h0 provided that it is
negative enough, i.e., it corresonds to an early enough initial time. This weak
dependence on the initial conditions is rather usual in this context and can be
qualitatively understood: after a sufficient amount of time, the accelerated expan-
sion for the quasi-de Sitter spacetime during inflation effectively erases any
information about the initial conditions, which is redshifted away. The actual
result will therefore be very close to that for h0 5 2`:

^Fk(h)Fk8(h8)&j 5 64p5 1m
mp
2

2

k23 (2p)3 d(
›
k 1

›
k8) cos k(h 2 h8) (15)

4. CONCLUSIONS

It is of major interest to study the cosmological implications which can be
extracted from our work, especially those related to large-scale gravitational
fluctuations. These fluctuations are believed to play a crucial role in the generation
of the large-scale structure and matter distribution observed in our present universe
[1]. They are also tightly connected with the anisotropies in the CMB radiation,
which decoupled from matter about 3 3 105 years after the Big Bang and provide
us with very valuable information about the early universe [2].
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From the analysis of our final result in Eq. (15) two main facts can be
concluded. First, an almost Harrison–Zel’dovich scale-invariant spectrum seems
to be obtained for large scales (small values of k). Second, no significant relaxation
of the coupling parameter is found. Since we get ^Fk(h)Fk8(h8)&j } (m/mp)2 in
agreement with the usual results [5, 19], the small value of the CMB anisotropies
detected by COBE imposes a severe bound on the gravitational fluctuations,
characterized by ^Fk(h)Fk8(h8)&j, which implies (m/mp) , 1026, whereas the
mechanisms considered in those works [20] which allowed an important relaxation
of this fine tuning (due to the extremely homogeneous classical initial conditions
taken for the inflaton field) resulted in ^Fk(h)Fk8(h8)&j } (m/mp).

It can be shown that genuine quantum correlation functions can be equiva-
lently obtained through a stochastic description based on Langevin-type equations
even in regimes where the actual dynamics of the system does not admit a
description in classical terms [21]. The case of gravitational perturbations coupled
to a scalar field is more subtle due to the existing gauge symmetry associated to
diffeomorphic transformations and the subsequent constraints arising in the
dynamics of the whole system. Nevertheless, total agreement with the purely
quantum treatment [5] is expected at least for the case in which both gravitational
inhomogenities and the scalar field are treated perturbatively to linear order [22].
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